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Abstract

We investigate noise introduced by the operating system, which we identify as one of the main reasons
for a lack of synchronicity in parallel applications. Using a micro-benchmark, we measure the noise on
several contemporary platforms, and find that even with a general-purpose operating system noise can
be quite limited. We then inject artificially generated noise into a massively parallel system and measure
its influence on the performance of collective operations. Our experiments indicate that on extreme-scale
platforms, the performance is correlated to the largest interruption to the application, even if that proba-
bility is extremely small. We demonstrate that synchronizing the noise can significantly reduce its negative
influence.
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1 Introduction
The interaction between operating and run-time system components on massively parallel processing sys-
tems (MPPs) remains largely a mystery. While anecdotal evidence suggests that translation look-aside
buffer (TLB) misses, interrupts, and asynchronous events can dramatically impact performance, the re-
search community lacks a clear understanding of such behavior at scale and on real applications. Are there
levels of operating system (OS) interaction that are acceptable? How significant is the performance differ-
ence between global collective operations, such as barriers and reductions, in the presence of OS interfer-
ence? Are there thresholds that can be tolerated for some applications? Which? These and other questions
remain largely unstudied as we search to build ever-larger petascale MPPs and Linux clusters [9]. However,
answers to these questions are critical to the designs and computational models of future architectures and
cluster designs. Understanding how operating systems interact with applications, and how interrupts, pro-
cess scheduling, and I/O processing affect performance on large-scale systems is key to petascale systems
research.

Operating system interference is commonly referred to as “noise”. Before we identify its sources, we
should attempt to define what we consider noise. Intuitively, it is the collection of background activities
that involuntarily interrupt the progress of the main application. In this paper, we use noise to refer to the
overall phenomenon, but choose the term detour when discussing any individual noise-comprising event,
for example, when an application is temporarily suspended to process an OS-level interrupt.

Most asynchronous activities not initiated or managed from user space can clearly be identified as noise,
e.g., interrupts to update internal OS kernel clock. Many would also put TLB misses in this category, but
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we raise an objection to this position. A TLB miss occurs when an address supplied to the CPU by the
application cannot be resolved using the entries in TLB; page table entries (PTE) must then be consulted,
either by the CPU itself, or by the OS exception handler. While in many practical situations the exact times
of TLB misses are difficult to predict, they clearly depend on the application’s behavior, i.e., they are not
strictly asynchronous—TLB misses take place only if the application accesses a large number of memory
pages. Due to this causal relationship, it is at least worth a debate if considering TLB misses as system noise
is useful. Except for TLB misses within the OS code, the focus of improvement should be on memory layout
of the user code. The same is clearly true for cache misses. We do not consider them to be noise. Similarly,
there are problems that arise from uneven data partitioning. Some nodes will compute longer in iterations,
perturbing the synchronization of the system. All of these issues are most strongly tied to the application,
not the asynchronous behavior of the OS. For this paper we focus solely on the effects of OS noise outside
users control—the core scalability of an OS for petascale architectures.

2 Synchronicity
There are several modes of cooperation between processes in parallel applications. An important one
among them is the lockstep mode, where periodically all processes coordinate their progress using collec-
tive operations ranging from simplest barriers to complex all-to-all message exchanges. Because all pro-
cesses must take part in the collective operation, the overall speed is reduced to that of the slowest process.
Hence maintaining synchronicity between the processes is vital; ideally, each process should take exactly
the same amount of time to perform the operations between the collectives. With the collective invoked on
all processes at precisely the same moment, nodes would not be left idle, waiting for the others to catch
up. However, if just one process experiences a significant delay arriving at the collective, the entire op-
eration will suffer and all remaining nodes will sit idle [16]. Large-scale clusters and MPPs are especially
prone to this behavior due to the number of processes involved: the probabilities of delays are cumulative,
eventually turning into a virtual certainty.

There are several common events that can trigger a detour from the application code, not all of which
result in OS noise as we defined earlier. Some events have little overall impact on synchronization, while
others can cause dramatic delays. Table 1 provides an overview of detours on a 32-bit PowerPC box running
the Linux 2.4 kernel.

Table 1: Overview of typical detours.

Source Magnitude Example
cache miss 100 ns accessing next row of a C array
TLB miss 100 ns accessing infrequently used variable
HW interrupt 1 µs network packet arrives
PTE miss 1 µs accessing newly allocated memory
timer update 1 µs process scheduler runs
page fault 10 µs modifying a variable after fork()
swap in 10 ms accessing load-on-demand data
pre-emption 10 ms another process runs

Five of the entries from Table 1 are associated with memory access, indicating how complicated memory
management can be across increasingly complex hierarchies [15] on an OS that supports paging and virtual
memory for efficiency and flexibility.

The smallest disturbances come from cache misses. If the data is not in cache, a cache line is loaded from
main memory. A memory access normally takes around 100 ns.

When an instruction attempts to access memory at a virtual address that the CPU does not know how
to translate to the corresponding physical address, a TLB miss takes place. That can take several hundred
nanoseconds, provided that a corresponding PTE is available. If that is not the case, the OS exception han-
dler must then create a new PTE entry for the virtual address, which could take a few microseconds.

An OS exception handler is invoked if an attempt is made to access memory location that is protected.



This need not indicate an error; optimizations such as copy-on-write are implemented using this mecha-
nism. A detour in the order of 10 µs is possible in this case. The detour will be much longer if the page data
needs to be read from disk; the speed of the disk access (typically around 10 ms) is a limiting factor then.

Hardware interrupts normally have a higher priority than application processes. Interrupts cause a
handler to be invoked. Even though they are designed for speed, interrupt handlers take from a few mi-
croseconds to at most a few hundred to complete. If computationally expensive operations are required, a
handler may trigger additional processes, which are scheduled at a convenient time after the handler has
completed initial work. For example, a hardware interrupt handler of a network driver simply sends an
acknowledgement to the hardware and registers a delayed process to handle the newly arrived network
packet(s).

Multitasking operating systems are usually based on reoccurring “ticks”. A timer interrupt is period-
ically raised and the interrupt handler is invoked. Counters and timers are updated, and when a process
runs out of its time slice, another process is run. Typically, the timer interval is in the range of 1 to 10 ms.
The interrupt handler itself usually consumes several microseconds.

Obviously, the process scheduler can introduce very long detours if the parallel application process is
supplanted by some other process. A typical detour will then take at least 10 ms—the time slice size—unless
the newly scheduled process voluntarily vacates the processor. Therefore, rogue processes on a cluster,
particularly those not I/O bound and so using the full time slice, can be a significant problem.

One class of detours absent from Table 1 due to its unpredictability is a lack of balance between individ-
ual application processes. Poor programming excluded, some problems are simply inherently difficult to
balance properly, e.g., when the time needed to process data depends on the data itself. Even assuming that
such a problem is properly balanced at startup, if processing the data alters it, and if multiple iterations of
the algorithm are required, periodic load re-distribution will be required to maintain a good balance. The
dependence between processing time and data may be clearly visible in the algorithm, but it may just as
well be a subtle effect of, e.g., different memory access pattern employed on different processes, resulting
in substantially different cache hit ratios.

For an extreme-scale cluster, only some of these detours will ultimately lead to dramatically desynchro-
nizing parallel operations. It is unsynchronized noise that creates a problem, as its effects increase with an
increasing number of processes. Even very long detours—in the range of several milliseconds—have little
overall effect as long as they occur at the same time on all processors [13]. At the other end of the scale,
exceedingly short detours, such as a cache miss, take an order of magnitude less time than the fastest col-
lective operations. They do not contribute significantly to desynchronization if their frequency is similar on
all processes.

Lightweight kernels optimized for compute nodes, such as BLRTS [10] or Catamount [8] make an effort
to avoid many of these detours through a simplified architecture, e.g., by not supporting general-purpose
multitasking. From the entries in Table 1, cache misses are the only ones which will certainly occur, and
possibly also some hardware interrupts and timer updates, but in a far more limited number than in a
general-purpose OS.

3 Noise measurements

3.1 Accurate time measurement
To explore the effect of noise on extreme-scale machines, we begin by gathering real benchmarks from ex-
isting platforms. Since detours can be very short, careful benchmarking is critical. Measuring cache or TLB
misses is outside of our scope of interest; still, to measure hardware interrupts a clock-time measurement
function with a sub-microsecond precision is required. Thus, the commonly used POSIX gettimeofday()
system call is not quite good enough: even if its precision matches its resolution (what is not guaranteed),
it will still only have a precision of 1 µs. Besides, as we will show later, on some systems invoking it takes
several microseconds, simply because of the system call overhead.

Most CPUs provide a very precise CPU timer that can usually be read using just a few assembly in-
structions, so it only takes some ten to one hundred nanoseconds to obtain a new value. The timer is syn-
chronized with the CPU clock. The updating frequency is either the same as the CPU frequency (thus, the



precision will be 1 ns on a 1 GHz CPU), or it equals the timebase, which is lower than the CPU frequency
by a fixed factor. In the latter case, the precision will be somewhat lower, but still well under a microsec-
ond on any modern CPU. So long as power-saving variable clock frequency capabilities are not enabled,
measurements will be accurate.

The overhead of reading the timer is CPU-specific. The counter itself is usually 64-bit, so, at least on
architectures with 32-bit registers, an implicit or explicit atomic operation may be required to obtain a
consistent reading. Table 2 shows the overhead of reading the timer, and, for comparison, the overhead
of calling gettimeofday(), on a BG/L compute node (CN) and an I/O node (ION), as well as on an
x86 Linux laptop. As the table shows, using the CPU timer is easily one to two orders of magnitude less
expensive than calling gettimeofday(), in addition to providing a more accurate result.

Table 2: Overhead of reading the CPU timer and of calling gettimeofday(). Experiments conducted in
Apr. 2006.

Platform CPU OS cpu timer [µs] gettimeofday() [µs]
BG/L CN PPC 440 (700 MHz) BLRTS 0.024 3.242
BG/L ION PPC 440 (700 MHz) Linux 2.6 0.024 0.465
Laptop Pentium-M (1.7 GHz) Linux 2.6 0.027 3.020

3.2 Noise measurement technique
In order to measure noise, we use a benchmark loop as shown in Figure 1. This loop detects detours and
stores information about them in an array, for later processing. It will finish when the recording array gets
full; on a busy system, this will take place almost immediately, because of the frequency of context switches.
On the other hand, this loop can iterate for a long time on a virtually noiseless system such as the BG/L
compute node OS.

cnt=0;
min_ticks=INFINITY;
current=rdtsc();

while(cnt<N) {
  prev=current;      /* keep the previous timer value  */
  current=rdtsc();   /* obtain the current timer value */

  td=current-prev;
  if(td>threshold) {
    detour[cnt++]=prev;
    detour[cnt++]=current;
  }
  if(td<min_ticks) min_ticks=td;  
}

Figure 1: Acquisition loop of the noise measurement benchmark.

In the acquisition loop, the current timer value is repeatedly sampled (using a custom rdtsc() func-
tion) at a very high rate. If the code is allowed to run undisturbed, this will essentially be a periodic sam-
pling, since the same set of instructions is executed in each iteration. Randomly occurring detours bring
disturbances into that process; these are determined by simply subtracting the timer value obtained during
the previous iteration from the current one. We record the start and end time of each detour. Since for this
set of experiments cache, TLB, and other memory effects are not considered, the benchmark loop does not
exercise the memory. Instead, it correctly measures the interruptions forced by the OS when the applica-
tion is quiescent. The threshold level used for this benchmark was 1 µs. For modern machines, an ordinary
interrupt handler takes several microseconds (see Table 1).
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Figure 2: A sample of detours.

Figure 2 shows how the benchmark (Figure 1) regularly samples the clock until interrupted by a de-
tour. The vertical arrows pointing downwards represent sampling points; empty rectangles are the detours.
Three cases are shown:

1. No detour occurs, so t1 equals tmin (which is the final value of min_ticks from Figure 1).
2. A short detour of length d2 takes place. The inter-sample period t2 is approximately equal to tmin + d2

(it may be slightly larger because executing the detour code may flush the acquisition loop out of the
CPU cache). t2 is below the threshold, so the detour will not be recorded.

3. A longer detour of length d3 takes place. This time t3 ! tmin + d3 is above the threshold, so the detour
will be recorded.

The minimum iteration time tmin is very important, because it determines the maximum resolution of
the benchmark. A sample of the results captured on several platforms can be found in Table 3. The results
clearly indicate that all sampled architectures are capable of instrumenting 1 µs events. The exact tmin values
depend on the CPU frequency, but also on other factors, such as the quality of the branch prediction and
compiler optimization. Furthermore, the OS can set memory page attributes, such as cache inhibit or page
guard on pages where the loop resides. If so, the minimum iteration time will be different between two
platforms even if the underlying hardware is the same—this effect can be observed on BG/L. The vastly
superior timer resolution of the XT3 can be attributed to its 64-bit CPU: most operations in the loop are
performed on 64-bit integers, and the other platforms, featuring 32-bit CPUs, must implement those in
software.

Table 3: Minimum acquisition loop iteration times. Most experiments conducted in May 2005, XT3 in Aug.
2005.

Platform CPU OS tmin [ns]
BG/L CN PPC 440 (700 MHz) BLRTS 185
BG/L ION PPC 440 (700 MHz) Linux 2.4 137
Jazz Node Xeon (2.4 GHz) Linux 2.4 62
Laptop Pentium-M (1.7 GHz) Linux 2.6 39
XT3 Opteron (2.4 GHz) Catamount 7

This noise measurement technique is not without limitations. It is meant to be used for identifying in-
herent noise only: the system is expected to be idle, and the benchmark itself is small and simple enough to
generate no user-triggered detours when running. It will not measure any memory management overhead
or detours stemming from processing MPI messages in the background as they arrive from a communica-
tion link.

3.3 Noise measurement results
We have applied our noise measurement technique described above to several different platforms. The
results from five of them are presented in this paper.



Table 4 presents a statistical analysis overview of the results obtained on all platforms. Figures 3 to 5
provide a closer look at the actual data. Within the figures, plots on the left are time series graphs: the x
axis denotes the execution time since the start of the benchmark, the y axis the length of a detour that took
place at that time (if any). This plot gives a good idea of the noise pattern. Plots on the right also provide
the length of the detours on the y axis, but the x axis is sorted by the detour length. This provides a better
overview of the percentage of detours of a particular length.

Table 4: Statistical overview of the results. Most experiments conducted in May 2005, XT3 in Aug. 2005.

Platform Noise ratio [%] Max detour [µs] Mean detour [µs] Median detour [µs]
BG/L CN 0.000029 1.8 1.8 1.8
BG/L ION 0.02 5.9 2.0 1.9
Jazz Node 0.12 109.7 6.2 8.5
Laptop 1.02 180.0 9.5 7.0
XT3 0.002 9.5 2.1 1.2

Looking at the results in Table 4, we can see that the noise ratio can vary widely between the plat-
forms. The differences in the maximum detour length observed, while also large, are comparatively much
smaller. The mean and median are relatively close to each other, indicating that the noise distribution lacks
extremely long detours. Our claim, that we will further discuss in Section 5, is that the performance of
extreme-scale parallel applications is mostly affected by the longest detours observed, and not by the noise
ratio.

The data gathered from the compute node of IBM BG/L stands out from its peers (Fig. 3 (top)). As of this
writing, it is the largest MPP architecture available. The maximum detour is more than three times better
than the other platforms. The system is virtually noiseless. The only periodic interrupt is a decrement timer:
because the decrement register is a 32-bit integer, it would underflow after approx. 6.1 s (232/700 Mhz ×
106), so it gets reset in an interrupt handler every 6 s. However, on BG/L, even that interrupt is automatically
removed when the user code does not call user-level timers.

It is interesting to compare this with the data obtained on BG/L I/O node (Fig. 3 (bottom)), as the two
platforms have identical CPUs, so the differences can be attributed squarely to the operating systems used:
a specialized lightweight kernel on compute nodes and an embedded Linux on I/O nodes. From the data,
three types of behavior can be observed. 80% of the detours are 1.8 µs and correspond to a Linux timer
update scheduled for every 10 ms. 16% are slightly longer, approximately 2.4 µs in length, because on every
sixth timer interrupt the process scheduler is run. Finally, there are a handful of detours that are less than
6 µs.

Compared to other platforms, the detours from BG/L ION Linux are actually quite short. Jazz is a rel-
atively standard commodity Linux cluster. In spite of far more capable CPUs, the maximum detour length
is more than an order of magnitude larger. The difference between a specialized light-weight kernel and an
optimized embedded Linux kernel is far less than the difference between two different Linux systems. It is
interesting that the kernel is in fact the least responsible for these differences. BG/L IONs run a fairly stan-
dard embedded Linux kernel, without sophisticated low-latency patches. The dramatic difference stems
from the non-operating system processes run on these Linux platforms. BG/L ION Linux is trim, and can
be run without extra management or monitoring processes. Jazz on the other hand, even though optimized
for cluster computation, maintains detour-causing background processes. Often, these extra processes are
mistakenly included while discussing the noise native to an operating system, instead of separating the
noise inherent to the OS from the configuration of the system.

Finally, we can compare the noise on BG/L with that measured on another lightweight MPP kernel:
Catamount, running on the compute nodes of Cray’s large-scale MPP XT3 systems (Fig. 5). Noise ratio
(Tab. 4) is clearly superior to any of the Linux platforms, but is still much higher than that of BLRTS running
on BG/L compute nodes. In fact, the maximum and mean are slightly higher than on BG/L I/O nodes
running Linux. Median on the other hand is the lowest of all platforms tested, indicating that while XT3
is far from being noiseless, its detours are generally short. It is difficult to attribute all of the differences to
kernel design. The 64-bit AMD is significantly faster than the PPC at the heart of BG/L. Until a portable
light-weight kernel can be run on both BG/L and x86 hardware, exact comparisons cannot be made.
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Figure 3: Noise measurements on BG/L: Compute Node (top) and I/O Node (bottom).

4 Noise injection
The extremely low inherent noise of the BG/L compute node kernel makes it suitable as a test harness
for injecting artificial noise and measuring its influence on application performance. Beginning with the
nearly noiseless operation of BG/L we inject noise and explore the impact on applications that require
synchronous behavior.

The operations most sensitive to de-synchronizing detours are collectives. As described earlier, if even
one of the CPUs is late to the collective operation, the entire operation will be delayed. For example, if only
one of possibly thousands of nodes suspends the local application and schedules a different process for a
time slice, that single 10 ms detour on one CPU would suddenly stall the collective quite dramatically. On
a machine such as BG/L, with some fast collectives taking just a few microseconds, such a misconfigured
system would slow the collective operation by a factor of more than 1000.

To explore this behavior we focus solely on the MPI collective operations most sensitive to noise and
slowly inject random delays. The results presented below can thus be considered a worst case scenario, as
real-world applications perform collectives for only a fraction of their execution time.

A real-time interval timer was used to periodically force execution of a delay loop. We explored both
synchronized and an unsynchronized noise. In our implementation, the difference is only at initialization:
with the unsynchronized injection, individual processes of a parallel job are delayed by a random interval
before the first injection is scheduled. A barrier is performed before the benchmark measurements start, in
order to synchronize the execution progress of the processes; no further explicit (de)synchronizations are
performed.

Figure 6 presents the results of several collective operations. Each collective has been tested in config-
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Figure 4: Noise measurements on Linux platforms: Jazz cluster node (top) and a laptop (bottom).
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Figure 5: Noise measurements on XT3 compute node.
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Figure 6: Performance of collective operations (barrier (top), allreduce (middle), and alltoall (bottom)) in a
presence of artificially injected noise (synchronized (left) and unsynchronized (right)).

urations ranging from a single midplane (512 nodes) to 16 racks (16384 nodes) on the IBM T. J. Watson
Research Center 20-rack BG/L “BGW” system in Oct. 2005, as of this writing the second fastest computer
on the planet [17]. The results shown are for experiments performed in virtual node mode, i.e., when both
CPU cores on each node are occupied by application processes. We injected noise at frequencies ranging
from 10 Hz (interval 100 ms) to 1 kHz (interval 1 ms). The minimum detour injected was 16 µs—the over-
head of the interval timer used. We tried several larger values; in addition to 16 µs, Figure 6 shows results
for 50, 100, and 200 µs. In general, we found the performance of the noise-free experiments to be very close
to that of the experiments with a synchronized 16 µs noise at 100 ms intervals; we have thus decided to omit



the former results from the plots in order to avoid any undue clutter.
The results for the simplest barrier can be found at the top of the figure. Barriers on BG/L are imple-

mented using a dedicated global interrupt network, providing excellent performance. As can be observed,
synchronized noise (Fig. 6 (top-left)) only slightly affects the performance—by 26% in the worst case. Un-
synchronized noise (Fig. 6 (top-right)) presents more of a challenge—an execution time increase by up to a
staggering factor of 268 can be observed. However, that statement alone does not tell the full story. While
the absolute increase in execution time is important, more interesting is the relationship between perfor-
mance and detour length. As can be observed, that relation is mostly linear, and it saturates at twice the
time length of a detour (check the curve for interval 1 ms). As far as we know, barriers in virtual node mode
are implemented by first synchronizing the two processes running on the same node, and then synchroniz-
ing all nodes over the network. Each of these steps can be slowed down by as much as a single detour time,
but no more than that, simply because nodes execute each step independently, in parallel. Interestingly,
there appears to be another saturation point at the level equal to a single detour length (check the curve for
interval 100 ms). It seems that the relationship between the execution time and the node count is non-linear,
at least for high injection intervals: there is a critical value of parameters, where a phase transition takes
place between a very efficient execution largely unaffected by noise, and a less efficient one, where the ef-
fect of noise is linear (please note that the node count axis is logarithmic; the effect is even more apparent
in a linear scale). We need to stress that we do not see any prohibitive, super-linear execution time growth
related to the size of the machine.

The second collective operation tested was allreduce. There are at least two sorts of reduction operations
on BG/L. Certain simple cases can be handled by the network hardware; others require a cooperation of
the message layer code linked with the application, or even of the application code itself. The results shown
here are for the latter case, as noise has a more interesting influence then. Allreduce with a synchronized
noise (Fig. 6 (middle-left)) behaves quite similarly to a barrier, only the logarithmic complexity of the oper-
ation in respect to the number of processes is more apparent. The behavior with an unsynchronized noise
(Fig. 6 (middle-right)) is somewhat different. Depending on perspective, it can be characterized as either less
susceptible to noise than the performance of barriers (execution time increase by at most a factor of 18), or
worse overall (the increase observed is by over 1000 µs). As with barriers, execution time is mostly linear in
relation to detour length. The larger degree of cooperation required from the application processes by the
reduction operation means that there are more opportunities for noise to influence the performance. As the
algorithm is logarithmic in nature, the maximum slowdown is not fixed like it was with barriers, but also
increases logarithmically with the number of processes.

The last collective operation we have tried was alltoall, depicted in Fig. 6 (bottom). Unlike the previous
two, it has a linear complexity with respect to the number of nodes, so on a massively parallel machine like
BG/L its performance leaves something to be desired: we had to label the z axis in milliseconds to fit the
plots. Noise injection has a comparatively minor influence on the performance, probably because alltoall
has a high degree of parallelism, so occasional detours do not stall the whole operation. Results indicate
little difference between a synchronized and unsynchronized noise injection. The slowdown we observe
ranges from 173% for 1024 processes to 34% for 32768 processes, although in absolute terms the latter is the
highest, reaching around 53 ms. What is somewhat worrying though, is that the increase with the detour
length has become super-linear. In fact, that was to a limited extent already the case with allreduce, but
it is far more pronounced with alltoall (see Fig. 6 (bottom-right)). However, we need to point out that the
noise level where that happens is very high: there is a detour of 200 µs every 1000 µs. This is more like a
cacophony than a noise, so no wonder it affects the performance in that way.

In addition to the experiments in virtual node mode presented above, we have also performed analo-
gous ones in coprocessor mode, i.e., when only one application process per node is run, and some message-
passing services are offloaded onto the second core. One could expect that this separation would make
coprocessor mode far more insensitive to noise. However, experiments have shown that the influence of
noise is very similar irrespective of the execution mode; presumably that is the case because even in copro-
cessor mode the bulk of communication-related operations are still performed by the main CPU core.



5 Discussion
While still a relatively new topic, the issue of operating system noise has been studied by others for several
years, and the roots can be traced back to over a decade. The experiments described by Burger et al. [4],
while focusing on another aspect of the problem (evaluation of gang scheduling and demand paging on
massively parallel systems), employ techniques similar to what we used in Section 4: they inject artificial
delays to simulate the effect of sharing CPUs with other processes. In a more recent study, Petrini et al. [11]
found nonessential processes to be responsible for a significant slowdown of the ASCI Q machine, and
devised techniques to identify the sources of noise and eliminate them. However, because the difficulties
stemmed from a misconfigured system running printer daemons and other non-essential processes, it can-
not be generalized to the nature of noise inherent in tick-based operating systems.

Several studies have shown that, on 4-CPU SMP machines, the overall parallel job performance is better
if one of the CPUs is left idle [7], so that it can handle the interrupts or other processes. The remaining
CPUs can remain tightly synchronized. Coscheduling processes of a parallel application across the whole
machine allowed Jones et al. [6] to reduce the execution time of collectives such as allreduce by a factor of 3
on a large IBM SP.

Sottile and Minnich [12] argue that micro-benchmarks based on fixed work quantum principle do not pro-
vide enough insight and recommend using fixed time quantum as an alternative, as it makes the results much
easier to analyze using established techniques from signal processing and spectral analysis. The benchmark
introduced in Section 3 samples the CPU timer as frequently as possible, performing a minimal, constant set
of operations between the samples. This means that it works according to the fixed work quantum principle,
since sample intervals will not be constant if detours occur. Fixed time quantum would be impractical in
our case, as the overhead of timer interrupts on BG/L is over 10 µs—much more than the shortest detours
we are interested in. We still did our best to avoid cache effects by only storing information on detours that
were above a predefined threshold.

In an initial theoretical study into the problem of noise, Agarwal et al. [1] determined that noise is capa-
ble of drastically reducing the performance of collective operations, but only with some noise distributions,
such as heavy-tailed or Bernoulli. On the other hand, Petrini et al. [11] claim that, at least in case of fine-
grained applications, short but frequent detours on all nodes are more detrimental to the performance than
long but less frequent ones on just a few nodes. They further claim that performance is affected most if noise
resonates with an application, i.e., if their granularities are similar. We believe that to be only partially true.
Obviously, fine-grained noise will have little effect on a coarse-grained application, as it simply will not
be able to de-synchronize the processes in any significant way—we could see that in case of the expensive
alltoall collective (Fig. 6 (bottom)). However, we see no reason why coarse-grained noise should not affect a
fine-grained application. On the contrary, its effects are likely to be devastating, as one could conclude from
looking at the results of lightweight barriers (Fig. 6 (top-right)). Essentially, even fairly infrequent detours
become very likely with a rapidly increasing number of processes, and once they are close to certain to
occur, they dwarf all the shorter, but more frequent detours.

This is confirmed by Tsafrir et al. [14]. Using a probabilistic model they show that the impact of noise on
a parallel job is linearly proportional to the number of nodes, but only if noise probability is small enough.
Once the job exceeds a particular size, a detour is nearly certain to occur, and further increases in node
count do not affect noise. This confirms our findings from Section 4 regarding barriers. According to their
model, for 100k nodes, one needs a per-node noise probability no higher than 10−6 per phase (i.e., between
two collectives) for a machine-wide probability of a detour to be lower than 0.1. They identify fine-grained
clock ticks to be a major source of overhead: even though 1 kHz ticks take no more than 1% of CPU time,
they slow down a micro-benchmark by at least 40%—on one node. Cache pollution due to an execution
of kernel code is blamed for that, and eliminating ticks is the recommended solution, as synchronizing so
frequent events on a massively parallel machine might be impractical.

Brightwell et al. [3] performed a performance comparison between Linux and a lightweight Cougar ker-
nel (a predecessor of Catamount) on the ASCI Red machine. While we cannot draw broad conclusions from
their comparison of Linux with an interrupt-driven TCP adapter to Cougar’s far more efficient transport
layer, the authors do provide many useful insights. They observe that not-massively-parallel code running
under Linux can perform significantly better than on Cougar, probably due to continuous improvements
to the compilers and libraries made by the free and open source software developers. Essentially, the over-



heads of maintaining state-of-the-art software bundle are much higher for a niche product than for the
mainstream.

Also, as MPP platforms become more popular, they are put into new uses, requiring more capabilities
from the kernel. For example, some BG/L users have been requesting a support for dynamically-loaded
libraries, so that tools like Python can be used on the compute nodes. Basically, users want MPPs to be
more like the systems they are used to; it may be difficult to do that and at the same time maintain the
performance advantage of lightweight kernels.

6 Conclusions
This paper focused on the synchronicity of processes in parallel scientific applications and the desynchro-
nizing effects that can be introduced via the OS. We provided an overview of typical detours that can be
attributed to contemporary computer architectures and general-purpose operating systems. We pointed
out that so far as synchronicity is concerned, only some of those detours are actually relevant.

In Section 3, we used a micro-benchmark to measure noise on several platforms. Our results, which
are an extension of work published in [2], indicate that while specialized lightweight kernels have a clearly
superior noise ratio, the average detour length among all platforms tested is of the same order of magnitude.
Even a fairly standard Linux kernel can have a low maximum detour length, provided that the hardware
it manages is fairly simple and the set of processes limited. With sophisticated low-latency patches or real-
time enhancements [5], the differences in maximum detour length compared to lightweight kernels would
likely be even smaller. The differences in noise ratio could be mostly eliminated with a move to a tick-less
kernel.

To get more insight into the effect of noise on synchronicity, in Section 4 we benchmarked the perfor-
mance of several collective operations under various levels of artificially injected noise. While the slow-
down in many cases is rather large, the experiments represent a worst case scenario, as a real-world appli-
cation would perform collective operations far less frequently, and thus would be affected to a far lesser
degree.

However, the most significant result of this paper is that detours needed to be quite large in order to
significantly impact performance on extreme-scale architectures. Remember that the detour times for the
BG/L ION Linux were all less than 6 µs—without any special latency-reducing patches or other optimiza-
tions. The minimum noise we could artificially inject for BG/L was 16 µs, with the resulting data hardly
distinguishable from the case where there was no noise at all. It is not until detours as long as 50 mus oc-
cur every 1 ms before any appreciable impact can be seen. This strongly indicates that the noise from even
tick-based operating systems with unsynchronized schedulers, such as Linux, would have little impact on
overall system performance. However, a single rogue stealing an occasional timeslice could slow collec-
tives by a factor of 1000. Clearly, impact is an issue of scale; it is dominated by the relationship between
the absolute performance of collective operations to the longest unsynchronized detours in the system. For
this reason, the noise within an extreme-scale Linux cluster may in fact pose little real performance impact.
Without the benefit of a lightning-fast global interrupt and tree-reduction networks, such as are available
on BG/L, the noise introduced by the Linux kernel can be relatively small compared to collectives formed
from point-to-point operations. We believe that unless extra processes or interrupt processing dramatically
desynchronize a Linux cluster, OS noise does not cause significant performance degradation.

The experiments also show what an improvement a simple initial synchronization of noise can bring,
especially for more lightweight collectives. The slowdown is not cumulative in any significant way: we do
not see significantly super-linear growth in execution time, relatively to either the number of nodes or the
detour length. Thus, noise should not pose serious problems even on extreme-scale machines, as long as
we can keep it synchronized.

All in all, we believe the data gathered confirms that running a general-purpose OS such as Linux on
massively-parallel machines should be viable, and is definitely worth pursuing.
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